P5 Science Drivers: Theory

Stefan Höche

SLAC National Accelerator Laboratory

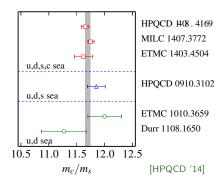
DOE Exascale Requirements Review (HEP)

[http://www.usparticlephysics.org/p5]

From the summary:

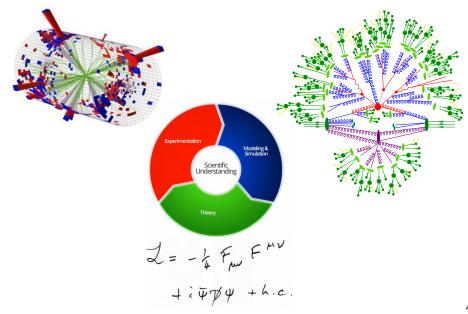
► Specific investments in particle accelerator, instrumentation, and computing research and development are required to support the program and to ensure the long-term productivity of the field.

From the report:


▶ Computing cuts across all activities in particle physics, and these activities spur innovation in computing. The field played leading roles in developing and using high-throughput and distributed/grid computing, online [..] data processing, high-performance computing, high-performance networking, large-scale data storage, large-scale data management and analysis, and the World Wide Web [..]

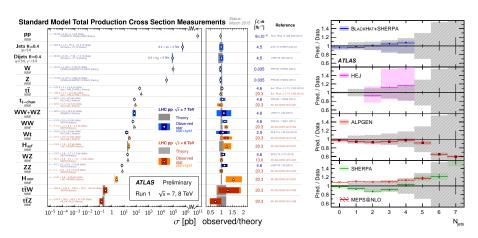
Theory computations will continue to increase in importance, as higher fidelity modeling will be required to understand the data.

- ► LQCD is only means to extract SM parameters depending on non-perturbative dynamics of QCD
- ▶ Ab-initio calculation in discrete space-time with lattice spacings down to ~ 0.06 fm in $144^3 \times 288$ hypercube
- Systematic errors from continuum extrapolation and chiral extrapolation, the latter lately reduced and soon to be eliminated


- ► Observables include masses, hadron decay properties and basic Standard Model parameters
- Direct interpretation of BaBar, CLEO, CDF, DØ, Belle, LHCb, BESIII and Belle II experimental data
- Most precise determination of strong coupling from LQCD, needed in search for new physics through Higgs-boson decays at ATLAS & CMS

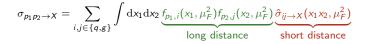
▶ Uncertainty reduction in theory predictions for muon g-2 may come from LQCD \rightarrow would directly impact FNAL experiment

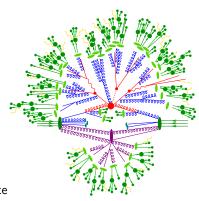
Non-tradtitional HPC: Perturbative QCD



1

Interplay with experiment

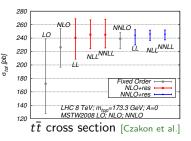

- ► Both inclusive and fully differential results needed to scrutinize SM
- ► Particle-level predictions mandatory for direct comparison and unfolding

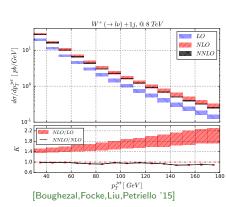

Aspects of the theory

- ► Perturbative regime
 - ► Hard processes
 - ► Radiative corrections
- ▶ Non-perturbative regime
 - ► Hadronization
 - ► Particle decays

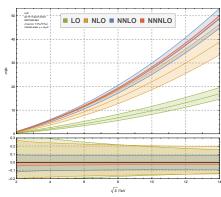
Divide et Impera

- ▶ Quantity of interest: Total interaction rate
- ► Convolution of short & long distance physics



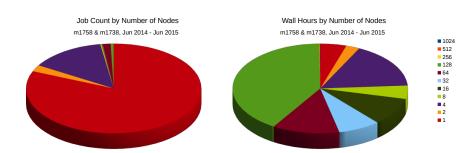

Current state of development

- ▶ Parton shower Monte Carlo (Herwig, Pythia, Sherpa,...)
- Automated NLO calculations (BlackHat,GoSam,Helac,MadLoop,MadGolem,NJet,OpenLoops,...)
- ► Matching to parton shower (aMC@NLO,Herwig,POWHEG Box,Sherpa,...)
- ► Merging of NLO calculations (aMC@NLO,Helac,Pythia,Sherpa,...)


Cutting edge technology & future directions

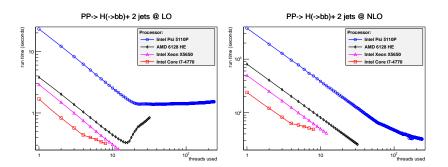
- ► Inclusive NNNLO (gg→H)
- ▶ Differential NNLO (V/H(+jet), $\gamma\gamma$,VV,...)
- ▶ NNLO+N x LL resummation (gg \rightarrow H, $t\bar{t}$,...)
- ▶ NNLO+parton shower (W,Z,gg \rightarrow H)

- ► New method for regularizing divergences (jettiness subtraction)
- ► Calculation performed using hybrid MPI+OpenMP approach



[Anastasiou, Duhr, Dulat, Herzog, Mistlberger '15]

- ► First complete N³LO calculation at a hadron collider
- ► Total scale variation 3%, reducing theory uncertainty by factor 3


Type of calculation	CPU hours per project	projects per year
NLO parton level	300,000	10-12
Matrix Element Method	200,000	3-5
NNLO parton level	250,000	5-6
Precision event generation	200,000	3
Exclusive jet cross sections	300,000	1-2
Parton Distributions	50,000	5-6
MSSM phenomenology	500,000	10
BSM constraints	150,000	2
Model building	100,000	1-2

- ▶ Projected total of \geq 6M CPUh for pQCD and \geq 5.45M CPUh for BSM
- ▶ Prone to rapid changes depending on theory and technology developments

- ► NERSC usage during past year ~6.07M CPUh (pQCD only)
- ► Still at small-scale, but large potential for growth
- ▶ 7 publications in 2014, 3 in 2015 (as of Jun 8)
- ► First (full) calculation of W/H+jet at NNLO arXiv:1504.02131, arXiv:1505.03893
- ► First NNLO+PS matched simulation for Drell-Yan arXiv:1405.3607

- ▶ MCFM generator has been a workhorse in NLO calculations for years
- ► Recently thread- (OpenMP) and MPI-parallelized arXiv:1503.06182
- ► Used for jettiness subtraction at NNLO arXiv:1505.03893 and arXiv:1504.02131

- ► Theory computing includes traditional and non-tradtional cases
- ► Lattice QCD has larger needs and well-developed technology
- ▶ Perturbative QCD is exploiting a large potential for growth
- ► BSM phenomenology still to join at larger scale (LBNL only so far)
- ▶ Small investments on computing can yield large returns on theory side (example pQCD NNLO W/Z+jet, computed at NERSC)